
Tunguska Manual 0.0.3

Viktor Lofgren <vlofgren@gmail.com>

http://www.acc.umu.se/~achtt315/tunguska/

2008-03-25

Contents

1 Introduction 3
1.1 The �ne print . 3
1.2 Foreword . 3

I The software 4

2 The emulator 5
2.1 Getting started . 5
2.2 Command line arguments . 5
2.3 The interface . 6

2.3.1 Special keys . 6
2.3.2 Indicator lights . 6

3 The assembler 7
3.1 Conventions . 7
3.2 Command line arguments . 7
3.3 Numerical constants . 7
3.4 Instructions and addressing modes . 7

3.4.1 Addressing modes . 8
3.5 Assembler macros . 8
3.6 Inline arithmetics . 8
3.7 Labels and assembler variables . 9

II Introduction to Ternary Computing 10

4 Numerical representation 12
4.1 Conventions . 12
4.2 Ternary numeral base . 12

4.2.1 Balanced ternary . 12
4.2.2 Compact representation . 13

4.3 Ternary representation on binary computer . 13

5 Ternary logic 14
5.1 Conventions . 14
5.2 Ternary logic . 14

5.2.1 Logical conditionals . 14
5.2.1.1 Material conditional . 14
5.2.1.2 Logical biconditional . 14

5.2.2 Ternary operators . 15
5.2.2.1

∧
(AND) . 15

5.2.2.2
∨

(OR) . 15
5.2.2.3

⊕
(XOR) . 15

5.2.2.4 ~ (NOT) . 15
5.2.3 Non-boolean operations . 15

5.2.3.1 Shift . 15
5.2.3.2 Shift| . 16
5.2.3.3 BUT . 16

5.3 Truth tables . 16

1

CONTENTS 2

A Tunguska speci�cations 17
A.1 Registers . 17

A.1.1 Processor status register speci�cation . 17
A.2 Op-code speci�cations . 18

A.2.1 Addressing modes . 18
A.2.2 Operations . 18

A.3 Reserved addresses . 20
A.3.1 Screen . 20

A.3.1.1 Vector mode . 20
A.3.1.2 Raster mode . 20
A.3.1.3 Text mode . 20

A.4 Interrupts . 21
A.4.1 Disk I/O . 21
A.4.2 Auxiliary General Data Processor (AGDP) . 22

A.5 Floating point . 22
A.6 Notes for 6502 programmers . 22
A.7 Debugging . 23

B The GNU Free Documentation License 24

Chapter 1

Introduction

1.1 The �ne print

Copyright (c) 2008 Viktor Lofgren. Permission is granted to copy, distribute and/or modify this document under the terms
of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with
no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section
entitled "GNU Free Documentation License".

1.2 Foreword

This is a multi-part document covering the use of the Tunguska Emulator, the Tunguska Assembler, a brief introduction to
Ternary Computing, and the Speci�cations of Tunguska.

Tunguska is by no means a�liated with any organization, religion, political movement, nationality, sports team, text
editor or pizza topping; mentioned, insinuated, or otherwise referenced. It is non-pro�t, non-a�liated, and largely only exists
for the fun of it.

If you do �nd some horrible crime against mathematics or grammar in here, �rst make sure this is the latest version of
the document by visiting the Tunguska website, and if it indeed is the latest version you've found the error in, feel free to
send me an email with a suggested correction.

3

Part I

The software

4

Chapter 2

The emulator

2.1 Getting started

To compile and install Tunguska, simply do the following

> cd tunguska-version

> ./configure

> make

> make install

To be of any sort of use, Tunguska needs a memory image to load. Starting tunguska without one would be the equiavalent
of booting your computer without any sort of hard drive. Don't worry, you don't need to illegally download some proprietary
image o� some murky backwater website. All you need to get started ships with Tunguska. After compiling and installing
Tunguska itself, you need to assemble an image, and this is how you do it.

> cd tunguska-version /memory_image

> tg_assembler -o image.ternobj ram.asm agdp.asm stdlib.asm screen.asm

You're now ready to load the image with Tunguska

> tunguska image.ternobj

You can also assemble disk images, and load them with tunguska. To do this, you need to �nd the source code for some such
image, I suggest you download the pong clone from Tunguska's website http://www.acc.umu.se/~achtt315/tunguska/ and
put it in the same directory as the other .asm-�les. You're now ready to assemble

> tg_assembler -o pong.ternobj pong.asm

And here's how to load it in Tunguska

> tunguska -F pong.ternobj image.ternobj

Now, from the tunguska prompt type

> LOADSUB

And you're done! That's all there is to it. Now you'll probably want to dive in and make your own programs. Good for you.
The most helpful tip on that (except reading this document) is to look up a 6502-assembly reference or guide on the

internet. Tunguska is compatible enough for most of the stu� you'll �nd there to be applicable. If something doesn't work
as expected, head over to Appendix A and check so the instruction is still there (some instructions have changed names,
some have been dropped).

2.2 Command line arguments

Tunguska takes the following command line arguments:

-h Display help message

-f Full screen

-T Specify �oppy image

-Z Don't attempt to actually load the �oppy, assume it's zero.

5

CHAPTER 2. THE EMULATOR 6

2.3 The interface

The border around the window indicates the size of the raster window (bright) and the text/vector window(dark).

2.3.1 Special keys

Esc Exit

F9 Enable trace mode, spew the location of the program counter to standard output.

F10 Debug, print all registers to standard output.

F11 Step instruction (when in pause mode).

F12 Send interrupt

Pause Toggle pause

2.3.2 Indicator lights

Top-left of the Tunguska window is three indicator ligths, labelled R, G, AG. They correspond to

R Running when lit, paused when not

G Graphics mode (see speci�cations)

AG Auxiliary graphics mode (see speci�cations)

Chapter 3

The assembler

3.1 Conventions

The following document uses the following conventions, anything inside hard brackets [like this] is optional. Anything inside
braces and separated by pipes {like|this} is a situation where you must select one of the options (in the example, either like
or this). 'n' means any numeral, 's' means any string, 'a' means any address or label name, 'l' means explicitly any label
name.

3.2 Command line arguments

The assembler takes the following command line arguments:

-v Verbose mode

-o Specify output

-h Display help message

3.3 Numerical constants

There are two main numeral classes in the Tunguska assembler , trytes and words. Trytes have trit-width 6, and words have
trit-width 12. A tryte can generally be used in place of a word, but a word can not be used in place of a tryte. There are
two special operators, 'LOW' and 'HIGH' that allow you to extract the individual trytes of a word, and use that as a tryte.

In the strictest sense, it is sometimes possible to use a word in place of a tryte without the assembler complaining, but
it isn't recommended.

There are two allowed numeral bases, decimal and balanced nonary. Balanced nonary allows numbers in the range -4,...,4;
but since there is no symbols for negative numbers, the letters A,...,D are used to symbolize -1,...,-4. Balanced nonary is to
ternary roughly what octal is to binary.

31 Regular decimal. No pre�x required. Since it is within +-364, both a word and a tryte.

1000 Regular decimal. No pre�x required. Only a word, not a tryte.

%0DA Nonary triplet. Always a tryte long.

%0DA114 Nonary sextet. Always a word long.

%000000 Nonary sextet. Always a word long, even if it is smaller than 364.

LOW %0DA114 Lower tryte of nonary sextet. Equivalent to %114.

3.4 Instructions and addressing modes

In general, there is no forbidden instructions in Tunguska. Even if you try to pass an unexpected addressing mode to an
operator, the whole machine shouldn't crash and burn. There can be unexpected behavior though, so don't do it on purpose.
For a complete list of Tunguska instructions, see the machine speci�cations.

The tunguska assembler expects all instructions to be uppercase, any lower case instructions will be interpeted as labels
or variables, and the assembler will complain.

7

CHAPTER 3. THE ASSEMBLER 8

3.4.1 Addressing modes

OP Implicit addressing. No argument.

OP A Accumulator. Whatever operation is done with the accumulator as argument. Strictly speaking, this is the same
as implicit addressing.

OP #n Immediate addressing. Whatever operation is done with the directly speci�ed numeral as argument.

OP a Absolute addressing. Whatever operation is done on the memory at address a.

OP a,X Absolute addressing with X o�set. Whatever operation is done on the memory at address a+X.

OP a,Y Absolute addressing with Y o�set. Whatever operation is done on the memory at address a+Y.

OP (a) Indirect addressing. Whatever operation is done on the memory pointed to by the memory at address a.

OP (a,X) Indirect addressing with X o�set. Whatever operation is done on the memory pointed to by the memory at
address (a+X).

OP (a),Y Indirect addressing with Y o�set. Whatever operation is done on (the memory pointed to by the memory at
address a) + Y.

OP X,Y XY-addressing. Whatever operation is done on the memory pointed to by X:Y.

3.5 Assembler macros

The Tunguska assembler supports a series of pseudo-instructions, or macros that do not a�ect the machinecode itself, but
allows the assembler to enter non-generated data, or perform other operations.

As a rule of thumb, all macros begin with an @, and are all uppercase.

@DT {n|s}[, {n|s}, ...]

De�ne tryte. Accepts a comma separated list of numerals and strings. These are entered into the assembled memory output
as-is.

@DW {n|s|a}[, {n|s|a}, ...]

De�ne word. Accepts a comma separated list of numerals, strings or memory addresses (labels).

@REST {n|s} [{n|s} = 0]

Reserve argument1 number of trytes into memory, set them to argument2.

@EQU l {n|s|a}

Set variable argument1 to argument2. For most intents and purposes, this is identical to jumping to argument 2 and declaring
a label there.

@ORG {n|a}

Jumps instruction counter to address or label speci�ed. Interpret as "this is where I want the following code to go into
memory."

3.6 Inline arithmetics

The Tunguska assembler has support of inline arithmetics, that is, it can calculate pretty much any algebraic function based
on values available to it at assembly-time. A magic $$ token is available, resolving to the address of this (the current)
memory position. It works pretty much like you'd expect it to, with regular in�x syntax. The only quirk is that you can't
use paranthesis for precedence override, instead you must use braces.

This works: {1+2} * 3 - 5 + $$ - somelabel*2
This doesn't: (1+2) * 3 - 5 + $$ - somelabel*2

CHAPTER 3. THE ASSEMBLER 9

3.7 Labels and assembler variables

While labels and assembler variables are in many ways interchangable, there are a few di�erences. Labels can have local child
labels and child variables that, from within the label are accessible through .localname and from outside the label through
label.localname, but a variable can not.

A label is declared through labelname: in the beginning of a line, and accessed through substituting labelname where-
ever an address is requested.

A variable is declared through @EQU variable value, and is accessible in much the same way a label is. Futhermore,
it is possible to store not only words, but trytes in variables, which can be accessed for an instance in immediate addressing
mode like this: OP #variable.

A very powerful combination is the $$ -token and variables. For an instance, if you want to determine the length of a
string automatically for use later, you can use a construct like this:

mystring: @DT 'Hello world!', 2, 'How are you doing?'

@EQU .length $$ - mystring

The length of mystring (which reads: 'Hello world![new line]How are you doing?') will be stored in mystring.length at
no cost of machine memory.

Part II

Introduction to Ternary Computing

10

11

Notes

This is more or less original research, and on some parts it might be downright erroneous. See it as a crash course into the
relevant parts of Ternary computing to Tunguska. It's unfortunately a bit esoteric in it's fairly heavy use of mathematical
and logical symbols and conventions.

More resources

There is a multitude of resources on Ternary Computing available on the Internet, though they can be di�cult to �nd. Here
are some of them:

http://xyzzy.freeshell.org/trinary Trinary Computer Systems. Very long and complete document about ternary/trinary
computers.

http://je�.tk/wiki/Trinary Trinary - Je�.tk (Some sort of project to buld a ternary computer? Has a lot of useful links,
not very clear on what the purpose of the page is.)

http://www.ternary.info/ Ternary.info - special interest group on balanced ternary numeral system and trinary logic
(Ternary site mostly in Russian, has helpful people in it's forum.)

http://en.wikipedia.org/wiki/ Lots of information under they keywords �Balaned ternary�, �Ternary logic�, �Ternary
numeral system�, ...

http://www.trinary.cc/ Mostly hardware-oriented trinary computer site.

Chapter 4

Numerical representation

4.1 Conventions

I will use subscript to indicate numeral base. n10 is decimal, n3 is ternary, n3b is balanced ternary, n9b is balanced nonary.
When nothing else is indicated, assume decimal.

I will use vector form to represent a number, in this fashion:

n =< aN−1, aN−2, ..., a1, a0 >

n will mean arbitrary number, N the number of digits in a number, a will mean a digit in given number.

4.2 Ternary numeral base

The regular ternary numeral system uses base 3, that is, it has three digits: 0, 1 and 2. The value of a ternary number is
formally de�ned as

V =
N∑

i=0

3iai (4.1)

Where ai is the i:th digit (and a0 is the least signi�cant digit). More practically, this means that the ternary number
201, in decimal is

2103 = 2 · 32 + 0 · 3 + 1 = 1910

There really isn't anything special or spectacular with this numeral base, it works much like you'd expect any old base
to do. Much like any conventional base, it's range is

0 ≤ X < 3N (4.2)

where N is the number of digits. At a �xed word size, addition with consideration to spillover is de�ned by

T0 + T1 = (T0 + T1) mod 3N (4.3)

4.2.1 Balanced ternary

The balanced ternary numeral system is a non-standard base. It still follows equation 1, but the digits are shifted one
step down. That is, it's digits are -1, 0, 1; but since there is no symbol for the digit -1, it's conventional to call the digits N,
0 and P. Again, to supply an example:

PN03b = 1 · 32 + (−1) · 3 + 0 = 610

An important thing to note is it's range. Note the extreme di�erence between the range of regular ternary in equation (2),
and the range of balanced ternary:

−b3
N

2
c ≤ X ≤ b3

N

2
c (4.4)

Addition with consideration to spillover is de�ned by

12

CHAPTER 4. NUMERICAL REPRESENTATION 13

T0 + T1 = (T0 + T1 + b3
N

2
c) mod 3N − b3

N

2
c (4.5)

Where T1 is positive. Do note the di�erence between equations (5) and (3).
The biggest di�erence between balanced bases and non-balanced �regular� bases is how negative numbers are handled.

There is no neat way of handling negative numbers in non-balanced bases, so you have to invent work-arounds. These
work-arounds are generally eyesores, either because they allow illegal states (negative zero in one's complement), or because
they generate asymmetric ranges (two's complement).

This issue is non-existent in balanced bases, since negative numbers are inherently supported. All you need to do to
invert a balanced number is invert all the digits (6).

−n = − < aN−1, aN−2, ..., a1, a0 >=< −aN−1,−aN , ...,−a1,−a0 > (4.6)

4.2.2 Compact representation

There are two major ways of representing ternary numbers in a more manageable way: Nonary (Base 9) and Septemviges-
imal (Base 27). Septemvigesimal is very unpractical, since it requires symbols for 17 additional digits beyond our decimal
0. . . 9.

Nonary is much more manageable. It is very close to decimal in data density and therefore easy to �intuit� the value of.
Nonary should be easier to wrap your mind around than say hexadecinal which is more alien to decimal, data-density-wise.

In this document, we're interested speci�cally balanced nonary. It has nine digits, -4, -3, -2, -1, 0, 1, 2, 3, 4. Again,
we lack symbols for negative digits, and for this reason, I will introduce the letters A. . . -D to represent -1,. . . -4.

It's value is governed by the following formula:

V =
N∑

i=0

9iai (4.7)

Example:

3AD9b = 92 · 3 + 9 · (−1) + (−4) = 23010

Each balanced nonary digit represents two balanced nonary digits.

4.3 Ternary representation on binary computer

There is no such binary word size b that it's possible to represent a ternary word of size t without super�uous states. This
follows from the prime uniqueness theorem, which simpli�ed to �t this case states that

3b 6= 2t∀b, t 6= 0

So the quest is not to �nd a lossless representation of ternary values on binary computer, but minimizing loss while
maximizing usability and speed. Assume ternary word size 6, 729 states. The smallest number of binary bits that can
represent that many states is 10, 1024 states. That's 295 meaningless states. Furthermore, there is no real obvious connection
between individual bits in the binary representation of the ternary word, and the digits of the ternary word.

Obviously, this is not a good representation. It is small, but quite useless. Instead, if one represents a ternary digit with
two bits. This representation squanders states pretty carelessly, but it is by far the most easily used one. There is a clear tie
between bits and ternary digits, and it is quite fast.

It is also worth mentioning that it is possible to implement ternary logic with memory pointers, where the value is
represented by a pointer to a memory location containing a true-false value, but this memory location can also be some
invalid value (typically NULL), meaning the third state. However, this is even worse from a state point of view. On a 32 bit
computer, 232 = 4, 294, 967, 296 states (the size of a memory address) are used to store one state, and the other two states
are stored in hopefully one bit, but more likely 8. So, worst case scenario, that's using 232 + 28 = 4, 294, 967, 552 states to
store 3 states. Needless to say, this is not something you'll want to use for speed or size. No matter how you twist and turn
this, it will never be an e�ective solution1.

1For creating a ternary computer, emulated or in hardware. There is probably some cases where this sort of construction can be useful in other

�elds.

Chapter 5

Ternary logic

5.1 Conventions

In this part, I will abbreviate TRUE to T, UNKNOWN to U, FALSE to F; furthermore, I will use standard logic symbols

•
∧
= AND

•
∨
= OR

•
⊕

= XOR

• ...

5.2 Ternary logic

Boolean logic, TRUE or FALSE-logic, while immensely powerful, is limited due to the fact that it only deals in absolutes.
Answer the question �Was it raining in western Beijing 4:39 PM, March 13 1839?� in boolean logic. Unless you're an
archeometeorologist, are exceptionally old, or own a time machine; you won't know the answer, and therefore, you will be
unable to answer either true or false.

But, note well how your head is not spinning and sparking and you how you are not shrieking �DOES NOT COMPUTE!�
repeatedly, because unlike robots in science �ction �lms from the 50's, you understand ternary logic.

Ternary logic isn't something new and scary, it's something old and mundane. It's, just as boolean logic, a formalization
of human logic. Only di�erence is that ternary logic introduces a third state. There are multiple ideas of what this third
state should be; unknown, both, neither, a zen non-answer. None of them are inherently wrong, they are all ternary logic. I
will be describing true-unknown-false logic.

It's important to realize that this is just one possible interpretation of ternary logic. Even though I will be using �proof�-
like devices to to derive the output of the functions, this is merely so that the system of logic formulated is self-consistent,
and compatible with booelan logic. This also means the proofs can be more lax, and call on common sense more often than
otherwise merited.

5.2.1 Logical conditionals

What does this mean for logical conditionals? Let's take a look at them.

5.2.1.1 Material conditional

Material conditionals don't need that much modi�cation. Assume you have a rule �If P, then Q�, or in logical symbols
P → Q, then since modifying existing boolean rules is undesirable, it is necessary to make a rule for the case P is Unknown.
It is not hard to convince yourself that if P is unknown, and P implies Q, then Q must also be unknown. We can also protect
ourselves against the logical fallacy of a�rming the consequent by introducing a rule that states that if P implies Q, and Q
is true, then P is unknown.

5.2.1.2 Logical biconditional

Logical biconditionals are also pretty much the same. Assume you hae the rule �P if and only if Q�, or in logical symbols
P ↔ Q, then the case of concern is when P is unknown. Since all cases involving true or false, for both P and Q, are already
taken by boolean logic, then a logical biconditional with either P or Q unknown must imply that the other is also unknown.

14

CHAPTER 5. TERNARY LOGIC 15

5.2.2 Ternary operators

Boolean logic isn't wrong, it works and it arrives at the correct results, so whatever extensions are made to it must preserve
backward compatibility with boolean logic, so all standard boolean operators with exclusively true or false values must result
in the same values you would expect them to with conventional boolean logic.

5.2.2.1
∧
(AND)

The AND operator can pretty much be intuited from what we know of it's boolean counterpart. We know AND is commu-
tative, so the only cases we need to deal with are:

• T
∧

U = U; Since T
∧

F 6= T
∧

T , the result must be U.

• F
∧

U = F; Since F
∧

F = F
∧

T = F , the result must be F.

• U
∧

U = U; Since both arguments are unknown, nothing is known about the result.

5.2.2.2
∨
(OR)

The same logic used to deduce the results of the AND operator can be used to deduce the results of the OR operator. It
also is commutative, so the cases are the same:

• T
∨

U = T; Since T
∨

F = T
∨

T = T , the result must be T.

• F
∨

U = U; Since F
∨

F 6= F
∨

T , the result must be U.

• U
∨

U = U; Since both arguments are unknown, nothing is known about the result.

5.2.2.3
⊕

(XOR)

The same logic used to deduce the results of AND and OR also works for XOR. XOR is also commutative, so these are the
cases we must consider:

• T
⊕

U = U; Since T
⊕

F 6= T
⊕

T, T
⊕

U=U.

• F
⊕

U = U; Since F
⊕

F 6= F
⊕

T, T
⊕

U=U.

• U
⊕

U = U; Both arguments are unknown, nothing can be said about the result.

A small point of interest, if ternary logic is represented with balanced ternary, so that T=1, U=0, F=-1, then P
⊕

Q=−(P ·Q),
which makes

⊕
very useful in ternary computing, since it both does masking and inversion.

5.2.2.4 ~ (NOT)

If nothing is known about a variable, then nothing can be known about the inverted variable. Therefore, ~U = U.

5.2.3 Non-boolean operations

There are many possible ternary logical operations. First, consider binary logic. There are 16 possible bivalent logical
operations. Ternary logic has as 39, or 19683 possible loical operations. 729 of them are commutative.

5.2.3.1 Shift

The shift operator is an operator of convenience. It doesn't correspond to any particular logical relationship. What it does
is essentially addition with wrap around. With balanced ternary, the function is de�ned as

S(P,Q) =


1 P + Q = −2
−1 P + Q = −1
0 P + Q = 0
1 P + Q = 1
−1 P + Q = 2

CHAPTER 5. TERNARY LOGIC 16

5.2.3.2 Shift|

The shift| operator (called permute in Tunguska, from it's ability to permute values) is like shift, without the wrap-around.

S|(P,Q) =

 −1 P + Q < 0
0 P + Q = 0
1 P + Q > 0

5.2.3.3 BUT

The BUT operator is a complement to AND and OR. It does not correspond to any semantic operator. It is part of the
same family of operators as AND and OR, with a 5:3:1 distribution of values. AND has 5F:3U:1T, OR has 5T:3U:1F; while
BUT has 5U:3F:1T.

There are many other 5:3:1-operators, truth to be told, BUT is only implemented in Tunguska because it is in TriIN-
TERCAL, so not to hang any TriINTERCAL-users out to dry without their favorite operator.

5.3 Truth tables

Here are truth tables for the hitherto mentioned logical operations.

A B ~A A
∧

B A
∨

B A
⊕

B A BUT B A shift B A shift| B

T T F T T F T F T
T U F U T U U T T
T F F F T T F U U
U T U U T U U T T
U U U U U U U U U
U F U F U U U F F
F T T F T T F U U
F U T F U U U F F
F F T F F F F T F

Appendix A

Tunguska speci�cations

Balanced ternary arithmetic, tryte width 6. Address width, word size 12. Standard notation balanced base-9 (nonary).
Accessible address range DDD:DDDb9 to 444:444b9. Total accessible memory 53110 ktrytes. Big endian.

A.1 Registers

Tunguska has relatively few general purpose registers, but the speed of memory access is more or less identical to register
access, so this is not that big of a deal. Directly user-accessible registers are indicated by bold.

Name Purpose

A Accumulator
X Address register
Y Address register
PC Program counter
S Stack index
CL Clock register
P Processor status

A.1.1 Processor status register speci�cation

The processor status register (P) has the following trit�elds, and it is set by most operations.

MST LST

PR V B I G C

The �ags have the following purpose

Flag Purpose

C Carry
G Comparison. Sign of the result of the last operation
I No-Interrupt �ag
B Break in progress �ag
V Over�ow �ag
PR Parity �ag

Note: I and B �ags may merge in the future to make better use of ternary capabilities.

17

APPENDIX A. TUNGUSKA SPECIFICATIONS 18

A.2 Op-code speci�cations

The tunguska operation codes are following as following, where A is addressing mode and C is operation. In general, there
are no forbidden combinations of addressing modes and operations, specifying an unsupported mode may be unpredictable,
but will not crash the system.

MST LST

A A C C C C

A.2.1 Addressing modes

DEC B9 Symbol Instruction length Description

-4 D ABS 3 Value at memory position directly speci�ed
-3 C IMM 2 Value immediately following op-code
-2 B AX 3 ABS with o�set X
-1 A AY 3 ABS with o�set Y
0 0 ACC 1 Accumulator
0 0 IMP 1 Implicit � no argument
1 1 INDX 3 Value at (Memory position + X)
2 2 INDY 3 Value at (Memory position)+Y
3 3 INDIRECT 3 Value pointed to by the memory position directly speci�ed
4 4 X:Y 1 Memory at page X, index Y

A.2.2 Operations

DEC B9 Symbol Valid addressing mods Comment

-40 DD CLV IMP Clear over�ow
-39 DC BRK IMP Trigger interrupt
-38 DB RTI IMP Return from interrupt
-37 DA LDA ACC, IMM, ABS, ABSX, ABSY, IND, INDX, INDY, X:Y Set accumulator to memory value
-36 D0 LDX ACC, IMM, ABS, ABSX, ABSY, IND, INDX, INDY, X:Y Set Y register to memory value
-35 D1 LDY ACC, IMM, ABS, ABSX, ABSY, IND, INDX, INDY, X:Y Set X register to memory value
-34 D2 STA ACC, IMM, ABS, ABSX, ABSY, IND, INDX, INDY, X:Y Store accumulator's value in memory
-33 D3 STX ACC, IMM, ABS, ABSX, ABSY, IND, INDX, INDY, X:Y Store X register's value in memory
-32 D4 STY ACC, IMM, ABS, ABSX, ABSY, IND, INDX, INDY, X:Y Store Y register's value in memory
-31 CD TAX IMP Transfer A to X
-30 CC TAY IMP Transfer A to Y
-29 CB TXA IMP Transfer X to A
-28 CA TYA IMP Transfer Y to A
-27 C0 TSX IMP Transfer Stack index to X
-26 C1 TXS IMP Tarnsfer X to Stack index
-25 C2 PHA ACC, IMM, ABS, ABSX, ABSY, IND, INDX, INDY, X:Y Push to stack
-24 C3 PHP IMP Push processor status to stack
-23 C4 PLA ACC, IMM, ABS, ABSX, ABSY, IND, INDX, INDY, X:Y Pull from stack
-22 BD PLP IMP Pull processor status from stack
-21 BC AND ACC, IMM, ABS, ABSX, ABSY, IND, INDX, INDY, X:Y A=A∧memory
-20 BB EOR ACC, IMM, ABS, ABSX, ABSY, IND, INDX, INDY, X:Y A=A⊕memory
-19 BA ORA ACC, IMM, ABS, ABSX, ABSY, IND, INDX, INDY, X:Y A=A∨memory
-18 B0 BIT ACC, IMM, ABS, ABSX, ABSY, IND, INDX, INDY, X:Y Set status �ag as though AND
-17 B1 ADD ACC, IMM, ABS, ABSX, ABSY, IND, INDX, INDY, X:Y A=A+memory
-16 B2 CMP ACC, IMM, ABS, ABSX, ABSY, IND, INDX, INDY, X:Y Set status �ag as though A-memory
-15 B3 INC ACC, ABS, ABSX, ABSY, IND, INDX, INDY, X:Y Increase value by 1
-14 B4 INX IMP Increase X register by 1
-13 AD INY IMP Increase Y register by 1
-12 AC DEC ACC,ABS, ABSX, ABSY, IND, INDX, INDY, X:Y Decrease value by 1
-11 AB DEX IMP Decrease X register by 1

DEC B9 Symbol Valid addressing mods Comment

APPENDIX A. TUNGUSKA SPECIFICATIONS 19

DEC B9 Symbol Valid addressing mods Comment
-10 AA DEY IMP Decrease Y register by 1
-9 A0 ASL ACC,ABS, ABSX, ABSY, IND, INDX, INDY, X:Y Shift value left, spillover in carry
-8 A1 LSR ACC,ABS, ABSX, ABSY, IND, INDX, INDY, X:Y Shift value right, spillover in carry
-7 A2 ROL ACC,ABS, ABSX, ABSY, IND, INDX, INDY, X:Y Rotate left
-6 A3 ROR ACC,ABS, ABSX, ABSY, IND, INDX, INDY, X:Y Rotate right
-5 A4 JMP ABS, ABSX, ABSY, IND, INDX, INDY, X:Y Jump
-4 0D JSR ABS, ABSX, ABSY, IND, INDX, INDY, X:Y Jump to subroutine
-3 0C RST IMP Return from subroutine
-2 0B CLC IMP Clear carry
-1 0A CLI IMP Clear interrupt �ag
0 00 NOP IMP No operation
1 01 SEC IMP Set carry
2 02 SEI IMP Set interrupt �ag
3 03 MLH ACC, IMM, ABS, ABSX, ABSY, IND, INDX, INDY, X:Y A=high tryte(A*memory)
4 04 MLL ACC, IMM, ABS, ABSX, ABSY, IND, INDX, INDY, X:Y A=low tryte(A*memory)

5 1D DIV ACC, IMM, ABS, ABSX, ABSY, IND, INDX, INDY, X:Y A = integer(A
memory)

6 1C MOD ACC, IMM, ABS, ABSX, ABSY, IND, INDX, INDY, X:Y A = remainder(A
memory)

7 1B PLX IMP Pull X from stack
8 1A PLY IMP Pull Y from stack
9 10 PHX IMP Push X to stack
10 11 PHY IMP Push Y to stack
11 12 JCC ABS, ABSX, ABSY, IND, INDX, INDY, X:Y Jump if carry is clear
12 13 JCT ABS, ABSX, ABSY, IND, INDX, INDY, X:Y Jump if carry is positive
13 14 JCF ABS, ABSX, ABSY, IND, INDX, INDY, X:Y Jump if carry is negative
14 2D JEQ ABS, ABSX, ABSY, IND, INDX, INDY, X:Y Jump if comparison �ag is clear
15 2C JNE ABS, ABSX, ABSY, IND, INDX, INDY, X:Y Jump if comparison �ag isn't clear
16 2B JLT ABS, ABSX, ABSY, IND, INDX, INDY, X:Y Jump if comparison �ag is negative
17 2A JGT ABS, ABSX, ABSY, IND, INDX, INDY, X:Y Jump if comparison �ag is positive
18 20 JVC ABS, ABSX, ABSY, IND, INDX, INDY, X:Y Jump if over�ow is clear
19 21 JVS ABS, ABSX, ABSY, IND, INDX, INDY, X:Y Jump if over�ow is set
20 22 IVC IMP Invert carry �ag
21 23 PRM IMM, ACC, ABS, ABSX, ABSY, IND, INDX, INDY, X:Y Permutate value (tritwise add 1)
22 24 TSH IMM, ACC, ABS, ABSX, ABSY, IND, INDX, INDY, X:Y PRM without roll over
23 3D BUT IMM, ACC, ABS, ABSX, ABSY, IND, INDX, INDY, X:Y A BUT Value
24 3C LAD ABS, ABSX, ABSY, IND, INDX, INDY Load ADdress into X:Y
25 3B PGT ABS, ABSX, ABSY, IND, INDX, INDY, X:Y Copy contents of page A to page mem
26 3A PGS ABS, ABSX, ABSY, IND, INDX, INDY, X:Y Set contents of page A to mem
27 30 CAD ABS, ABSX, ABSY, IND, INDX, INDY Compare X:Y with argument
28 31 XAM ABS, ABSX, ABSY, IND, INDX, INDY, X:Y Exchange A with memory value
29 32 XAX IMP Exchange A with X
30 33 XAY IMP Exchange A with Y
31 34 XYX IMP Exchange X with Y
32 4D RESV
33 4C RESV
34 4B RESV
35 4A RESV
36 40 RESV
37 41 RESV
38 42 RESV
39 43 PAUSE PAUSE PAUSE
40 44 DEBUG DEBUG DEBUG

DEC B9 Symbol Valid addressing mods Comment

APPENDIX A. TUNGUSKA SPECIFICATIONS 20

A.3 Reserved addresses

The following memory addresses have special functionality, and should not be used for general purpose code or data storage.

Address range Purpose

DDD:DDD/C IRQ, IRQ data
DDD:DDB Screen mode
DDD:DDA Disk I/O
DDD:DD0 AGDP Operation
DDD:DD1/2 AGDP Register 1
DDD:DD3/4 AGDP Register 2
DDD:DCD/C AGDP Register 3

DDC:DDD-DDC:444 Stack
DDB:DDD-DDA444 Screen bu�er, text mode
DDB:DDD-DDB:444 Screen bu�er, vector mode
DDB:DDD-CAB:444 Screen bu�er, raster mode

444:441 Clock interrupt interval1

444:442/3 Interrupt handler vector

A.3.1 Screen

The Screen Mode tryte (DDD:DDB) has the following function

MST LST

RES RES RES Aux graphics mode Graphics mode Redraw

Screen redraws when Redraw is set to 1, and allowed graphics mode are raster(-1), text (0) and vector (1).

A.3.1.1 Vector mode

Vector mode only uses the �rst page of the screen bu�er (that is, DDB:DDD/444), and stores vector information in sets of
three trytes (allowing for a total of 121 interconnected lines in 729 colors). They are drawn in succession, and black lines are
not painted (there won't be black spots where black lines intersect visible ones.)

MST LST

First tryte MRed LRed MGreen LGreen MBlue LBlue
Second tryte UNUSED X Coo rdi na te
Third tryte UNUSED Y Coo rdi na te

A.3.1.2 Raster mode

Raster mode resolution is 324x2432 and uses a total of 108 memory pages, with two color depths:

• One pixel per tryte, allowing for a total of 729 colors. They are encoded like in the �rst tryte in vector mode above,
addressed according to (1).

T (x, y) = DDBDDD9b + 324y + x (A.1)

• One trit per pixel, allowing for a total of three gray light intensities, memory addressed according to (2), color intensity
speci�ed by (3):

T (x, y) = DDBDDD9b + 54y + bx
6
c (A.2)

R(x) = x mod 6 (A.3)

A.3.1.3 Text mode

Text mode resolution is 27 rows by 54 columns (2 memory pages).

1Don't set it to zero or less, unpredictable behavior will ensue
2Observant people will notice that this is 400b9x300b9

APPENDIX A. TUNGUSKA SPECIFICATIONS 21

A.4 Interrupts

IRQ Function IRQ data

0 Keypress interrupt Key
1 Clock interrupt Random value
2 Keyboard break sent undef.
3 Arithmetic error undef.
4 Soft interrupt undef.
5 Mouse motion relative X : relative Y
6 Mouse event click = 1, release = -1

A.4.1 Disk I/O

Tunguska features a �oppydisk-like virtual disk drive. It is controlled through the Disk I/O tryte (DDD:DDA). It is the same
size as the main memory (7292 trytes). All data transfer is on the block level, and block size is 729 trytes. The following
operations are allowed:

Name Number Function

NOOP 0 Idle
READ 1 Read from disk to memory
WRITE 2 Write from memory to disk
SYNC 3 Write from virtual disk to physical �le
SEEK 4 Set disk position to page

GETPOS 5 Get disk position

SEEK and GETPOS use the accumulator as input. Data is read to and from memory page speci�ed by the Y register.
The disk image format is 7292 consecutive 16 bit short integers, each storing a single memory cell. To save space, the

images are compressed with zlib.

APPENDIX A. TUNGUSKA SPECIFICATIONS 22

A.4.2 Auxiliary General Data Processor (AGDP)

The AGDP o�ers block operations and �oating point arithmetics. It has three 12 trit registers, AGDP R1-R3; and one
memory position that determines it's operation.

Operation Number Function Arguments

NOOP 0 Nothing -
ITOF 1 Convert Integer to Float R1 -> R1
FTOI 2 Convert Float to Integer R1 -> R1
FADD 3 Add two �oat numbers R1, R2 -> R1
FMUL 4 Multiply two �oat numbers R1, R2 -> R1
FDIV 5 Divide two �oat numbers R1, R2 -> R1
FEXP 6 Exponent of R1 R1 -> R1
FLOG 7 Natural logarithm of R1 R1 -> R1
FCOS 8 Cosine of R1 R1 -> R1
FSIN 9 Sine of R1 R1 -> R1
BLT 10 Block transfer R1 to R2 Length R3
BLS 11 Block set R1 to val R2+1 R2+1->R1:(R1+R3)
BLA* 12 Blockwise AND R1 vs. R2 Length R3
BLX* 13 Blockwise XOR R1 vs. R2 Length R3
BLO* 14 Blockwise OR R1 vs. R2 Length R3
BSH* 15 Blockwise �TSH� R1 vs. R2 Length R3
BLP* 16 Blockwise �PRM� R1 vs. R2 Length R3

* Overlap unde�ned.

A.5 Floating point

Tunguska has support for the equivalent of half-precision �oating point numbers, with base 3, a [-40,40] range exponent, and
[-3280, 3280] range signi�cand. Where the numbers are packed in two trits in the following fashion.

MST LST MST LST

E E E E S S S S S S S S

The mathematics are more or less identical to binary �oating point, the only signi�cant di�erence is that there is no need
for bias or a sign bit (sign is determined by the signi�cand S). The mathematics behind it is as follows.

F = S · 3E (A.4)

S = F · 3−E (A.5)

E = b ln |F |
ln 3

c (A.6)

A.6 Notes for 6502 programmers

There are some major di�erences between the 6502 and this machine. Beyond the obvious di�erences in endianness, and
processor status �ag, some instructions have changed. PHA is replaced by a general purpose PSH (�PHA A� will replicate
the behavior of PHA), that will push any memory value onto the stack. PLL is it's respective pull operation. ADC has
changed name to ADD with no change in functionality. RTS has changed name to RST with no change in functionality.

X:Y addressing is a new mode that uses both the X and Y register to address a memory location. The LAD operator
is a quick way to transfer a complex memory location onto X:Y (compare with the x86 �LEA� operation). Tunguska has an
address comparison operation CAD that compares the argument with X:Y, and sets �ags accordingly.

Branching has been abandoned, use jumps instead. The same behavior can be acheived with the $$-token.
There is also a series of convenience operations XAM, XAX, XAY, XYX that serve to swap the contents of registers

or memory in one atomic instruction.

APPENDIX A. TUNGUSKA SPECIFICATIONS 23

A.7 Debugging

Tunguska operates some built-in debugging facilities, mainly the DEBUG instruction which prints the contents of all
registers to stdout, and the PAUSE instruction which acts like a breakpoint and halts execution at a speci�c point in the
code, to allow for instruction stepping with the F11 key (execution is resumed by pressing the Pause key.)

Appendix B

The GNU Free Documentation License

GNU Free Documentation License Version 1.2, November 2002
Copyright (C) 2000,2001,2002 Free Software Foundation, Inc. 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.
0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other functional and useful document "free" in the

sense of freedom: to assure everyone the e�ective freedom to copy and redistribute it, with or without modifying it, either
commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit for
their work, while not being considered responsible for modi�cations made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves be free in the
same sense. It complements the GNU General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free documen-
tation: a free program should come with manuals providing the same freedoms that the software does. But this License is
not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published
as a printed book. We recommend this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder

saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited
in duration, to use that work under the conditions stated herein. The "Document", below, refers to any such manual or
work. Any member of the public is a licensee, and is addressed as "you". You accept the license if you copy, modify or
distribute the work in a way requiring permission under copyright law.

A "Modi�ed Version" of the Document means any work containing the Document or a portion of it, either copied
verbatim, or with modi�cations and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with
the relationship of the publishers or authors of the Document to the Document's overall subject (or to related matters)
and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook
of mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position
regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant Sections,
in the notice that says that the Document is released under this License. If a section does not �t the above de�nition of
Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the
Document does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the
notice that says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a
Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose speci�cation
is available to the general public, that is suitable for revising the document straightforwardly with generic text editors or
(for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is
suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text formatters.
A copy made in an otherwise Transparent �le format whose markup, or absence of markup, has been arranged to thwart
or discourage subsequent modi�cation by readers is not Transparent. An image format is not Transparent if used for any
substantial amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LATEX
input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML, PostScript or PDF
designed for human modi�cation. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats
include proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for which the

24

APPENDIX B. THE GNU FREE DOCUMENTATION LICENSE 25

DTD and/or processing tools are not generally available, and the machine-generated HTML, PostScript or PDF produced
by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly,
the material this License requires to appear in the title page. For works in formats which do not have any title page as such,
"Title Page" means the text near the most prominent appearance of the work's title, preceding the beginning of the body of
the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or contains
XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for a speci�c section name
mentioned below, such as "Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve the Title" of
such a section when you modify the Document means that it remains a section "Entitled XYZ" according to this de�nition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Docu-
ment. These Warranty Disclaimers are considered to be included by reference in this License, but only as regards disclaiming
warranties: any other implication that these Warranty Disclaimers may have is void and has no e�ect on the meaning of this
License.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this

License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all copies,
and that you add no other conditions whatsoever to those of this License. You may not use technical measures to obstruct
or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in
exchange for copies. If you distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.
3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more

than 100, and the Document's license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly
and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both
covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title
with all words of the title equally prominent and visible. You may add other material on the covers in addition. Copying
with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be
treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to �t legibly, you should put the �rst ones listed (as many as �t
reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-
readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-network location
from which the general network-using public has access to download using public-standard network protocols a complete
Transparent copy of the Document, free of added material. If you use the latter option, you must take reasonably prudent
steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus
accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through
your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large
number of copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modi�ed Version of the Document under the conditions of sections 2 and 3 above, provided

that you release the Modi�ed Version under precisely this License, with the Modi�ed Version �lling the role of the Document,
thus licensing distribution and modi�cation of the Modi�ed Version to whoever possesses a copy of it. In addition, you must
do these things in the Modi�ed Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous
versions (which should, if there were any, be listed in the History section of the Document). You may use the same title as a
previous version if the original publisher of that version gives permission. B. List on the Title Page, as authors, one or more
persons or entities responsible for authorship of the modi�cations in the Modi�ed Version, together with at least �ve of the
principal authors of the Document (all of its principal authors, if it has fewer than �ve), unless they release you from this
requirement. C. State on the Title page the name of the publisher of the Modi�ed Version, as the publisher. D. Preserve
all the copyright notices of the Document. E. Add an appropriate copyright notice for your modi�cations adjacent to the
other copyright notices. F. Include, immediately after the copyright notices, a license notice giving the public permission
to use the Modi�ed Version under the terms of this License, in the form shown in the Addendum below. G. Preserve in
that license notice the full lists of Invariant Sections and required Cover Texts given in the Document's license notice. H.
Include an unaltered copy of this License. I. Preserve the section Entitled "History", Preserve its Title, and add to it an
item stating at least the title, year, new authors, and publisher of the Modi�ed Version as given on the Title Page. If there
is no section Entitled "History" in the Document, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modi�ed Version as stated in the previous sentence. J. Preserve
the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise
the network locations given in the Document for previous versions it was based on. These may be placed in the "History"

APPENDIX B. THE GNU FREE DOCUMENTATION LICENSE 26

section. You may omit a network location for a work that was published at least four years before the Document itself,
or if the original publisher of the version it refers to gives permission. K. For any section Entitled "Acknowledgements"
or "Dedications", Preserve the Title of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein. L. Preserve all the Invariant Sections of the Document,
unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles.
M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modi�ed Version. N. Do not
retitle any existing section to be Entitled "Endorsements" or to con�ict in title with any Invariant Section. O. Preserve any
Warranty Disclaimers.

If the Modi�ed Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain
no material copied from the Document, you may at your option designate some or all of these sections as invariant. To do
this, add their titles to the list of Invariant Sections in the Modi�ed Version's license notice. These titles must be distinct
from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modi�ed Version
by various parties�for example, statements of peer review or that the text has been approved by an organization as the
authoritative de�nition of a standard.

You may add a passage of up to �ve words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text,
to the end of the list of Cover Texts in the Modi�ed Version. Only one passage of Front-Cover Text and one of Back-Cover
Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text
for the same cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you
may not add another; but you may replace the old one, on explicit permission from the previous publisher that added the
old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity
for or to assert or imply endorsement of any Modi�ed Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License, under the terms de�ned in section 4

above for modi�ed versions, provided that you include in the combination all of the Invariant Sections of all of the original
documents, unmodi�ed, and list them all as Invariant Sections of your combined work in its license notice, and that you
preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced
with a single copy. If there are multiple Invariant Sections with the same name but di�erent contents, make the title of each
such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section
if known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the
license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents, forming one
section Entitled "History"; likewise combine any sections Entitled "Acknowledgements", and any sections Entitled "Dedica-
tions". You must delete all sections Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released under this License, and replace the

individual copies of this License in the various documents with a single copy that is included in the collection, provided that
you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided you
insert a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim
copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a

volume of a storage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation is not
used to limit the legal rights of the compilation's users beyond what the individual works permit. When the Document is
included in an aggregate, this License does not apply to the other works in the aggregate which are not themselves derivative
works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than
one half of the entire aggregate, the Document's Cover Texts may be placed on covers that bracket the Document within
the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear on
printed covers that bracket the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modi�cation, so you may distribute translations of the Document under the terms of

section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders, but you
may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You
may include a translation of this License, and all the license notices in the Document, and any Warranty Disclaimers, provided
that you also include the original English version of this License and the original versions of those notices and disclaimers. In
case of a disagreement between the translation and the original version of this License or a notice or disclaimer, the original
version will prevail.

APPENDIX B. THE GNU FREE DOCUMENTATION LICENSE 27

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement (section 4)
to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this License.

Any other attempt to copy, modify, sublicense or distribute the Document is void, and will automatically terminate your
rights under this License. However, parties who have received copies, or rights, from you under this License will not have
their licenses terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to

time. Such new versions will be similar in spirit to the present version, but may di�er in detail to address new problems or
concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document speci�es that a particular numbered
version of this License "or any later version" applies to it, you have the option of following the terms and conditions either
of that speci�ed version or of any later version that has been published (not as a draft) by the Free Software Foundation. If
the Document does not specify a version number of this License, you may choose any version ever published (not as a draft)
by the Free Software Foundation.

ADDENDUM: How to use this License for your documents
To use this License in a document you have written, include a copy of the License in the document and put the following

copyright and license notices just after the title page:
Copyright (c) YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify this document under the

terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section
entitled "GNU Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with...Texts." line with this:
with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with the Back-Cover

Texts being LIST.
If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two alternatives

to suit the situation.
If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel under

your choice of free software license, such as the GNU General Public License, to permit their use in free software.

