
Ternary virtual machine speci�cations draft FEB 2008

February 25, 2008

Balanced ternary arithmetic, tryte width 6. Address width 12. Standard notation balanced base-9. Accessible address range
DDD:DDDb9 to 444:444b9. Total accessible memory 53110 ktrytes. Big endian.

Registers

Name Purpose

A Accumulator
X Address register
Y Address register
PC Program counter
S Stack index
CL Clock register
P Processor status

Processor status register speci�cation

MST LST

PR V B I G C

Where �ags have the following purpose

Flag Purpose

C Carry
G Comparison. Sign of the result of the last operation
I No-Interrupt �ag
B Break in progress �ag
V Over�ow �ag
PR Parity �ag

Note: I and B �ags may merge in the future to make better use of ternary capabilities.

1

Op-code speci�cations (A address mode, C op-code)

MST LST

A A C C C C

Addressing modes

DEC B9 Symbol Instruction length Description

-4 D ABS 3 Value at memory position directly speci�ed
-3 C IMM 2 Value immediately following op-code
-2 B AX 3 ABS with o�set X
-1 A AY 3 ABS with o�set Y
0 0 ACC 1 Accumulator
0 0 IMP 1 Implicit � no argument
1 1 INDX 3 INDIRECT with o�set X
2 2 INDY 3 INDIRECT with o�set Y
3 3 INDIRECT 3 Value pointed to by the memory position directly speci�ed
4 4 X:Y 1 Memory at page X, index Y

Operations

DEC B9 Symbol Valid addressing mods Comment

-40 DD CLV IMP Clear over�ow
-39 DC BRK IMP Trigger interrupt
-38 DB RTI IMP Return from interrupt
-37 DA LDA ACC, IMM, ABS, ABSX, ABSY, IND, INDX, INDY, X:Y Set accumulator to memory value
-36 D0 LDX ACC, IMM, ABS, ABSX, ABSY, IND, INDX, INDY, X:Y Set Y register to memory value
-35 D1 LDY ACC, IMM, ABS, ABSX, ABSY, IND, INDX, INDY, X:Y Set X register to memory value
-34 D2 STA ACC, IMM, ABS, ABSX, ABSY, IND, INDX, INDY, X:Y Store accumulator's value in memory
-33 D3 STX ACC, IMM, ABS, ABSX, ABSY, IND, INDX, INDY, X:Y Store X register's value in memory
-32 D4 STY ACC, IMM, ABS, ABSX, ABSY, IND, INDX, INDY, X:Y Store Y register's value in memory
-31 CD TAX IMP Transfer A to X
-30 CC TAY IMP Transfer A to Y
-29 CB TXA IMP Transfer X to A
-28 CA TYA IMP Transfer Y to A
-27 C0 TSX IMP Transfer Stack index to X
-26 C1 TXS IMP Tarnsfer X to Stack index
-25 C2 PHA ACC, IMM, ABS, ABSX, ABSY, IND, INDX, INDY, X:Y Push to stack
-24 C3 PHP IMP Push processor status to stack
-23 C4 PLA ACC, IMM, ABS, ABSX, ABSY, IND, INDX, INDY, X:Y Pull from stack
-22 BD PLP IMP Pull processor status from stack
-21 BC AND ACC, IMM, ABS, ABSX, ABSY, IND, INDX, INDY, X:Y A=A∧memory
-20 BB EOR ACC, IMM, ABS, ABSX, ABSY, IND, INDX, INDY, X:Y A=A⊕memory
-19 BA ORA ACC, IMM, ABS, ABSX, ABSY, IND, INDX, INDY, X:Y A=A∨memory
-18 B0 BIT ACC, IMM, ABS, ABSX, ABSY, IND, INDX, INDY, X:Y Set status �ag as though AND
-17 B1 ADD ACC, IMM, ABS, ABSX, ABSY, IND, INDX, INDY, X:Y A=A+memory
-16 B2 CMP ACC, IMM, ABS, ABSX, ABSY, IND, INDX, INDY, X:Y Set status �ag as though A-memory
-15 B3 INC ACC, ABS, ABSX, ABSY, IND, INDX, INDY, X:Y Increase value by 1
-14 B4 INX IMP Increase X register by 1
-13 AD INY IMP Increase Y register by 1
-12 AC DEC ACC,ABS, ABSX, ABSY, IND, INDX, INDY, X:Y Decrease value by 1
-11 AB DEX IMP Decrease X register by 1
-10 AA DEY IMP Decrease Y register by 1
-9 A0 ASL ACC,ABS, ABSX, ABSY, IND, INDX, INDY, X:Y Shift value left, store spillover in carry
-8 A1 LSR ACC,ABS, ABSX, ABSY, IND, INDX, INDY, X:Y Shift value right, store spillover in carry
-7 A2 ROL ACC,ABS, ABSX, ABSY, IND, INDX, INDY, X:Y Rotate left

DEC B9 Symbol Valid addressing mods Comment

2

DEC B9 Symbol Valid addressing mods Comment
-6 A3 ROR ACC,ABS, ABSX, ABSY, IND, INDX, INDY, X:Y Rotate right
-5 A4 JMP ABS, ABSX, ABSY, IND, INDX, INDY, X:Y Jump
-4 0D JSR ABS, ABSX, ABSY, IND, INDX, INDY, X:Y Jump to subroutine (push current PC)
-3 0C RST IMP Return from subroutine (pop PC)
-2 0B CLC IMP Clear carry
-1 0A CLI IMP Clear interrupt �ag
0 00 NOP IMP No operation
1 01 SEC IMP Set carry
2 02 SEI IMP Set interrupt �ag
3 03 MLH ACC, IMM, ABS, ABSX, ABSY, IND, INDX, INDY, X:Y A=high tryte(A*memory)
4 04 MLL ACC, IMM, ABS, ABSX, ABSY, IND, INDX, INDY, X:Y A=low tryte(A*memory)

5 1D DIV ACC, IMM, ABS, ABSX, ABSY, IND, INDX, INDY, X:Y A = integer(A
memory)

6 1C MOD ACC, IMM, ABS, ABSX, ABSY, IND, INDX, INDY, X:Y A = remainder(A
memory)

7 1B PLX IMP Pull X from stack
8 1A PLY IMP Pull Y from stack
9 10 PHX IMP Push X to stack
10 11 PHY IMP Push Y to stack
11 12 JCC ABS, ABSX, ABSY, IND, INDX, INDY, X:Y Jump if carry is clear
12 13 JCT ABS, ABSX, ABSY, IND, INDX, INDY, X:Y Jump if carry is positive
13 14 JCF ABS, ABSX, ABSY, IND, INDX, INDY, X:Y Jump if carry is negative
14 2D JEQ ABS, ABSX, ABSY, IND, INDX, INDY, X:Y Jump if comparison �ag is clear
15 2C JNE ABS, ABSX, ABSY, IND, INDX, INDY, X:Y Jump if comparison �ag isn't clear
16 2B JLT ABS, ABSX, ABSY, IND, INDX, INDY, X:Y Jump if comparison �ag is negative
17 2A JGT ABS, ABSX, ABSY, IND, INDX, INDY, X:Y Jump if comparison �ag is positive
18 20 JVC ABS, ABSX, ABSY, IND, INDX, INDY, X:Y Jump if over�ow is clear
19 21 JVS ABS, ABSX, ABSY, IND, INDX, INDY, X:Y Jump if over�ow is set
20 22 IVC IMP Invert carry �ag
21 23 PRM IMM, ACC, ABS, ABSX, ABSY, IND, INDX, INDY, X:Y Permutate value (tritwise add 1)
22 24 TSH IMM, ACC, ABS, ABSX, ABSY, IND, INDX, INDY, X:Y PRM without roll over
23 3D BUT IMM, ACC, ABS, ABSX, ABSY, IND, INDX, INDY, X:Y A BUT Value
24 3C LAD ABS, ABSX, ABSY, IND, INDX, INDY Load ADdress into X:Y
25 3B RESERVED
26 3A RESERVED
27 30 RESERVED
28 31 RESERVED
29 32 RESERVED
30 33 RESERVED
31 34 RESERVED
32 4D RESERVED
33 4C RESERVED
34 4B RESERVED
35 4A RESERVED
36 40 RESERVED
37 41 RESERVED
38 42 RESERVED
39 43 RESERVED
40 44 DEBUG DEBUG DEBUG

DEC B9 Symbol Valid addressing mods Comment

3

Reserved addresses

Address range Purpose

DDD:DDD/C IRQ, IRQ data
DDD:DDB Screen mode
DDD:DDA Disk I/O

DDC:DDD-DDC:444 Stack
DDB:DDD-DDA444 Screen bu�er

444:441 Clock interrupt frequency
444:442/3 Interrupt handler vector

Screen

The Screen Mode tryte (DDD:DDB) has the following function

MST LST

RES RES RES RES Graphics mode Redraw

Screen redraws when Redraw is set to 1, and allowed graphics mode are raster(-1), text (0) and vector (1).

Vector mode

Vector mode only uses the �rst page of the screen bu�er (that is, DDB:DDD/444), and stores vector information in sets of three trytes
(allowing for a total of 121 interconnected lines in 729 colors). They are drawn in succession, and black lines are not painted (there
won't be black spots where black lines intersect visible ones.)

MST LST

First tryte MRed LRed MGreen LGreen MBlue LBlue
Second tryte UNUSED X Coo rdi na te
Third tryte UNUSED Y Coo rdi na te

Raster mode

Raster mode resolution is 324x243 (and uses a total of 108 memory pages), with one pixel per tryte, allowing for a total of 729 colors.
They are encoded like in the �rst tryte in vector mode above.

Text mode

Text mode resolution is 27 rows by 54 columns (2 memory pages).

Interrupts

IRQ Function IRQ data

0 Keypress interrupt Key
1 Clock interrupt Random value
2 Keyboard break sent undef.
3 Arithmetic error undef.
4 Soft interrupt undef.
5 Mouse motion relative X : relative Y
6 Mouse event click = 1, release = -1

4

Disk I/O

Tunguska features a �oppydisk-like virtual disk drive. It is controlled through the Disk I/O tryte (DDD:DDA). It is the same size as
the main memory (729*729 trytes). All data transfer is on the block level, and block size is 729 trytes. The following operations are
allowed:

Name Number Function

NOOP 0 Idle
READ 1 Read from disk to memory
WRITE 2 Write from memory to disk
SYNC 3 Write from virtual disk to physical �le
SEEK 4 Set disk position to page

GETPOS 5 Get disk position

SEEK and GETPOS use the accumulator as input. Data is read to and from memory page speci�ed by the Y register.

Logic tables

A B A∧B A⊕B A BUT B A∨B A TSH B A PRM B

+ + + - + + + -
+ 0 0 0 0 + + +
+ - - + - + 0 0
0 + 0 0 0 + + +
0 0 0 0 0 0 0 0
0 - - 0 0 0 - -
- + - + - + 0 0
- 0 - 0 0 0 - -
- - - + - - - +

Notes for 6502 programmers

There are some major di�erences between the 6502 and this machine. Beyond the obvious di�erences in endianness, and processor
status �ag, some instructions have changed. PHA is replaced by a general purpose PSH (�PHA A� will replicate the behavior of
PHA), that will push any memory value onto the stack. PLL is it's respective pull operation.

X:Y addressing is a new mode that uses both the X and Y register to address a memory location. The LAD operator is a quick
way to transfer a complex memory location onto X:Y (compare with the x86 �LEA� operation).

5

